

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P71642A Publications Code 4PM1_02R_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked **unless** the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- awrt answer which rounds to
- eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$ leading to $x = ...$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$ where $|pq| = |c|$ and $|mn| = |a|$ leading to $x = ...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for *a*, *b* and *c*, leading to x = ...

3. <u>Completing the square:</u>

 $x^{2} + bx + c = 0$: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1.
$$(x^n \rightarrow x^{n+1})$$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication

from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question	Scheme	Marks
number		
1(a)	$ \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} \text{or} 6\mathbf{i} + 8\mathbf{j} = \overrightarrow{OB} - (3\mathbf{i} - 2\mathbf{j}) \text{ oe} $ $ 9\mathbf{i} + 6\mathbf{j} $	M1 A1 [2]
(b)	$\sqrt{6^2+8^2}$ or 10 (from Pythagorean triple)	B1 [1]
(c)	$(\pm)\frac{1}{"10"}(6\mathbf{i}+8\mathbf{j})$	M1 A1 [2]
		Total 5 marks

International GCSE Further Pure Mathematics – Paper 2R mark scheme

Part	Mark	Additional Guidance					
(a)	M1	Correct vector path written, can be implied by correct addition of vectors					
		OR correct vector statement together with correct substitution of the given					
		vectors (where \xrightarrow{OB} is not the subject)					
	A1	9i +6j					
(b)	B1	Need not be simplified					
(c)	M1	Correctly uses their magnitude from part (b)					
	A1	Correct vector					
		Penalise column vector notation for answer first time only					

Question	Scheme	Marks
number		
2	$(V =)3x^3$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 9x^2$	M1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \left(\frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}x}{\mathrm{d}V}\right)$ or $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$ oe	M1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}=\right)\frac{8}{9x^2}\qquad \text{oe}\qquad$	A1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{8}{9 \times 2^2} \qquad \text{oe}$	dM1
	$\frac{2}{0}$ oe	A1
	У 	[6]
	r	Fotal 6 marks

Part	Mark	Additional Guidance					
	B1	Correct simplified expression for Volume					
	M1	Minimally acceptable attempt at differentiation – see general guidance					
		$(kx^2 \text{ where } k \neq 0 \text{ if working from correct } V)$					
	M1	dx					
		correct chain rule that could be used to find $\frac{dt}{dt}$					
		dr = dr + dr					
		Condone absence of $\frac{dt}{dt}$ unless $\frac{dt}{dt}$ is not the subject.					
	A1	As shown oe					
	dM1	dx					
		Substitution of $x = 2$ into their $\frac{dt}{dt}$, dependent on second method mark.					
	A1	Correct answer (exact or correct to 2dp or better)					
	For all marks condone poor notation e.g. use of dy/dx as long as not ambiguous.						

https://xtremepape.rs/

Question number	Scheme	Marks
3 (a) (i)	$ar^2 = 5$ or $ar^4 = \frac{5}{2}$ or $5r^2 = \frac{5}{2}$	B1
	$\left(\frac{ar^4}{ar^2}\right) = \frac{5}{2} \qquad \text{or} \qquad \frac{5}{r^2} = \frac{5}{2} \qquad \text{oe} \qquad \rightarrow r$	M 1
	or $r = \sqrt{\frac{5}{2}}{\frac{5}{5}}$	
	$r = \frac{\sqrt{2}}{2} \qquad \qquad \text{oe}$	A1
(ii)	a = 10	A1 [4]
(b)	$S_{\infty} = \frac{"10"}{1 - "\frac{\sqrt{2}}{2}"}$	M1
	$20 + 10\sqrt{2}$	A1
		[2]
	1	otal 6 marks

Part	Mark	Additional Guidance						
(a)	Ignore la	abelling and mark parts (i) and (ii) together.						
(i)	B1	One correct equation as shown.						
		This is an M mark in epen.						
	M1	Attempts to solve simultaneously. Must be working with correct equations						
		or with $ar^3 = 5$ and $ar^5 = \frac{5}{2}$						
		Minimum attempt to correctly divide their equations or rearrange for a and equate as shown or to correctly rearrange and eliminate r , must achieve a value for r or for a						
		OR attempts to solve $5r^2 = \frac{5}{2}$ to obtain r						
		Allow errors in arithmetic but not mathematically incorrect process.						
	A1	Value as shown.						
		Allow this mark for correct answer from working with $ar^3 = 5$ and						
		$ar^{5} = \frac{5}{2}$						
(ii)		Must reject negative if seen.						
(11)		isw attempt to convert to decimal.						
	A1	Value as shown.						
(b)	M1	Correctly substitutes their values for <i>a</i> and <i>r</i> into the formula provided						
		r < 1						
	A1	Correct value.						

Question number	Scheme	Marks
4 (a)	$f(\pm 1)=0$ or $f(\pm 2)=-5$	M1
	-1 + 1p + -1q + 7 = 0 (p - q + 6 = 0) and -8 + 4p + -2q + 7 = -5 (4p - 2q - 1 = -5)	A1
	$4 (q-6) - 2q = -4 \qquad (2q = 20)$	alvi i
	p = 4 $q = 10$	A1 A1 [5]
	ALT – polynomial division $(x^3 + px^2 + qx + 7) \div (x + 1) = x^2 + (p - 1)x + q - p + 1$ and comparison of final step of division with 7 to obtain an equation or $(x^3 + px^2 + qx + 7) \div (x + 2) =$ $x^2 + (p - 2)x + (q - 2p + 4)$ remainder – 5 and comparison of final step of division with obtaining remainder -5 to obtain an equation	M1
	$(x^{3} + px^{2} + qx + 7) \div (x + 1) = x^{2} + (p - 1)x + q - p + 1 \text{ and}$ comparison of final step of division with 7 to identify $q - p + 1 = 7$ and $(x^{3} + px^{2} + qx + 7) \div (x + 2) =$ $x^{2} + (p - 2)x + (q - 2p + 4) \text{ remainder} - 5$ and comparison of final step of division with obtaining remainder -5 to identify $7 - 2(q - 2p + 4) = -5$	A1
	(p+6) - 2p = 2 $(-p = -4)$	dM1
	p = 4 $q = 10$	A1 A1
(b)	$x^{2} (+3x + 7)$ $x+1)\overline{x^{3} + "4"x^{2} + "10"x + 7}$ $\frac{x^{3} + x^{2}}{"3"x^{2}}$ or $x^{3} + 4x^{2} + 10x + 7 \equiv (x+1)(x^{2} + Ax + B)$	M1
	$"3"^2 - 4(1)("7") = a$ value	dM1
	-19 and a conclusion drawn e.g. the discriminant is negative so only one real root	A1 [3]
	ALT - use of completing the square	M1

$\left(x + \frac{3}{2}\right)^2 + \frac{19}{4} > 0$	dM1
$\left(x+\frac{3}{2}\right)^2+\frac{19}{4}>0$ and a conclusion drawn e.g. the completed square form is always greater than 0 so only one real root	A1

Total 8 marks

(a)	M1	Correct substitution of ± 2 or ± 1 into f (x) and equating to appropriate value.
	A1	Two fully correct equations as shown, powers of -1 and -2 evaluated,
		need not be simplified
		Missing brackets must be recovered for the award of this mark.
	dM1	An attempt to solve algebraically.
		Minimum attempt is to correctly substitute an expression for p or q into the
		other equation and attempt to solve
		or
		to multiply each equation correctly to make the coefficients $\pm p$ or $\pm q$ the
		same in each equation and attempt to add or subtract the equations
		(consistent appropriate operation).
	A1	Correct <i>p</i>
	A1	Correct q
ALT -	 polynor 	nial division
	M1	Correct method for polynomial division together with comparison of the
		final step of the division with the required result (no remainder for division
		by $(x + 1)$ and remainder -5 for division by $(x + 2)$)
	A1	Two fully correct equations as shown, need not be simplified
	dM1	An attempt to solve algebraically.
		Minimum attempt is to correctly substitute an expression for p or q into the
		other equation and attempt to rearrange
		or
		to multiply each equation correctly to make the coefficients $\pm p$ or $\pm q$ the
		same in each equation and attempt to add or subtract the equations.
	A1	Correct <i>p</i>
	A1	Correct q
(b)	M1	Attempts long division. Minimally acceptable attempt is the division and
		correct working as written in the MS as shown for their <i>p</i> and their <i>q</i> .
		Or if comparing coefficients, a correct equation/comparison (for their <i>p</i> and
		their q) must be written followed by an attempt to find A or B.
		Must get a 3TQ.
	dM1	Correctly substitutes 1, their A and their B into the expression for the
		discriminant and reaches a value.
	A1	Correct value of -19 (or for stating $9 - 28 < 0$) from correct quadratic and
		draws a conclusion.
		Allow for showing that there are complex roots for the quadratic together
		with appropriate conclusion.
		There must be some conclusion drawn, but it can be as simple as writing '#'
		or "shown".
ALT -	– complet	ting the square
	M1	Attempts long division. Minimally acceptable attempt is the division and
		correct working as written in the MS as shown for their <i>p</i> and their <i>q</i> .
		Or if comparing coefficients, a correct equation/comparison (for their p and
		their q) must be written followed by an attempt to find A or B .
		Must get a 3TQ.

dM1	Attempt at completing the square See general guidance for what constitutes an attempt at completing the square
A1	Correct completed square form and draws a conclusion. There must be some conclusion drawn, but it can be as simple as writing '#' or "shown".

Question number		Scheme						Marks
5 (a)								first B1
								2 values
		x	0	0.25	0.5	0.75	1	correct
		у	0.14	0.29	0.61	1.28	2.72	second B1
								all 5 values
								correct
								[2]
(b)	Eacl	h point	plotted corr	ectly within	the correct	t small squa	re	B1ft
	Smo	ooth cur	ve through	the points				B1ft
	Sint		ve unough	une pointes				[2]
(c) $e^{3x-2} = 3-x$					M1			
y =		y = 3 - x						M1
	0.0							A1ft
	0.9							[3]
							To	otal 7 marks
Part N	Aark			А	dditional (Guidance		
(a)	B1	SC1 –	allow 0.29	and/or 0.61	to be trunc	ated to 0.28	8 and/or 0.60	with 1.28
		correction than 2	t to gain thi decimal pla	s mark OR	for all three	e values cor	rect but giver	n to greater
	B1	For all	1 3 values ro	ounded corr	ectly as sho	wn.		
(b)	B1ft	ft the	correct plot	ting of their	points.			
	B1ft	ft a cu	rve "sensib	ly" plotted	through the	ir points, ne	ed not have t	he correct
	shape.							
(a)	Must pass through all of the points they have plotted. Minimum 4 points.							
	INT Rearranges the equation must be of form $e^{3x^2 z} = 3 - x$							
	M1 $y = 3 - x$ drawn correctly on the graph paper. Passing through the points (0.3) and (1.2) as a minimum.							
	A1ft	"0.9"	must be giv	en to 1 deci	imal place.	Not as part	of a coordina	.te.
		Follow through an appropriately shaped curve (or line segments) and correct						
		y = 3 - x. With answer given to 1 decimal place.						

Question number	Sch	eme	Marks		
6	Correctly identifies the angle VXO where X is the midpoint of CD and O is the foot of the perpendicular from V				
	There are other valid triangles that can be used.				
	$VC = a$ and $CX = \frac{a}{2}$	ld use values where VC is twice	M1		
	the length of <i>CX</i>				
	$((VX)^2) = a^2 - \left(\frac{a}{2}\right)^2$	$((VO)^2) = \sqrt{a^2 - \left(\frac{\sqrt{2}}{2}a\right)^2}$	dM1		
	$VX = \frac{\sqrt{3a}}{2} \text{oe}$	$VO = \frac{\sqrt{2}}{2}a$ oe	A1		
	$\cos\theta = \frac{\overline{2}}{\frac{\sqrt{3}a}{2}}$ oe	$ \tan \theta = \frac{\frac{\sqrt{2}a}{2}}{\frac{a}{2}} \text{ oe} $	M1		
	$\begin{bmatrix} \cos \theta = \frac{1}{\sqrt{3}} \text{oe} \\ \text{leading to } \theta = \end{bmatrix}$	$\begin{bmatrix} \tan \theta = \sqrt{2} \\ \text{leading to } \theta = \end{bmatrix}$			
	54.7	54.7	A1		
	Total 6 marks				

Part	Mark	Additional Guidance
	B1	Angle identified in written work or on diagram. Allow labelling to be any
		letters.
	M1	Denotes any side of the pyramid with <i>a</i> and any appropriate length on the
		base $\frac{a}{2}$. This can be in written work or on the diagram. The two sides can
		be any two sides (including values) which will form a triangle with the required angle and must be used in the work that follows (even if
		Incorrectly).
		Allow if the candidate denotes any side of the pyramid with <i>a</i> and identifies AO as $\frac{\sqrt{2}a}{2}$ oe
	dM1	Uses Pythagoras with a minus sign in a correct triangle with correctly
		labelled sides.
	A1	Correct expression for their correct choice of sides oe.
	M1	Working in triangle VXO (or other valid triangle) with their values from
		previous working, using any appropriate trigonometry.
	A1	Awrt 54.7

Question number	Scheme	Marks
7 (a)	(3x - 15 =) 30 or 330 or 390	M1
	x = 15 $x = 115$ $x = 135$	M1 A1 A1 [4]
(b)	$3\frac{\sin y}{\cos y} + 4\sin y = 0 \rightarrow \sin y \left(\frac{3}{\cos y} + 4\right) = 0$	M1
	$\sin y = 0$ and $\cos y = -\frac{3}{4}$ $\rightarrow y =$	A1ft
	y = -180, 0	A1
	y = 138.6, -138.6	A1
	ALT	•
	$3\tan y + 4\tan y\cos y = 0 \rightarrow \tan y (3 + 4\cos y) = 0$	M1
	$\tan y = 0$ and $\cos y = -\frac{3}{4}$ $\rightarrow y =$	A1ft
	y = -180, 0	A1
	y = 138.6, -138.6	A1
		[4]
(c)	$\cos\theta = 3\left(1 - \cos^2\theta\right) - 1 \Rightarrow 3\cos^2\theta + \cos\theta - 2 = 0$	MI
	$(3\cos\theta - 2)(\cos\theta + 1)$	M1
	$\theta = -180$	A1
	$\theta = 48.2, -48.2$	A1 [4]
	Το	tal 12 marks
L	-	

Part	Mark	Additional Guidance
(a)	M1	For any of 30 or 330 or 390
		May be implied by correct answers.
	M1	Solves a linear equation coming from attempt at use of inverse trigonometric
		function to obtain one value.
		e.g. solves $3x - 15 = "30"$
	A1 A1	First A1 for any correct value, second A1 for all 3 correct values and no
		others in the range.
	271	Ignore values outside the range.
(b)	MI	Correctly replaces the identity for tan y and attempts to deal with $\sin y$.
		Allow for factorising. Condone dividing through by sin y.
		Minimally acceptable attempt for factorisation is $A \sin y \left(\frac{B}{\cos y} + C\right)$
	A1ft	sin $y = 0$ and $\cos y = -\frac{B}{C}$, follow through their B and C only.
	A1	From sine: Both values, ignore extra values out of range, A0 for extra values
	A 1	In range.
	AI	rion cosine. Both values, ignore extra values out of range, A0 for extra
		values in range. v = awrt = 138.6
	ALT	<i>y</i> = <i>a</i> wit 150.0, <i>a</i> wit 150.0
	M1	Correctly replaces the identity for tan y and attempts to deal with $\tan y$
		Allow for factorising. Condone dividing through by tan y.
		Minimally acceptable attempt for factorisation is $A \tan y (B + C \cos y)$
	Alft	tan $y = 0$ and $\cos y = -\frac{B}{C}$, follow through their <i>B</i> and <i>C</i> only.
	A1	From tangent: Both values, ignore extra values out of range, A0 for extra values in range.
	A1	From cosine: Both values, ignore extra values out of range, A0 for extra
		values in range.
		y = awrt 138.6, awrt - 138.6
(c)	M1	Correctly uses the identity for $\cos^2 \theta$ and rearranges to get a 3TQ
		Minimally acceptable attempt is $\pm 3\cos^2\theta \pm \cos\theta \pm 2 = 0$
	M1	Solves a 3TQ to arrive at 2 distinct values for $\cos \theta$. See general guidance.
	A1	For – 180, ignore extra values out of range, A0 for extra values in range.
	A1	Both values, ignore extra values out of range, A0 for extra values in range.
		$\theta = $ awrt 48.2, awrt – 48.2

Question	Scheme	Marks
8 (a)(i)	$e^{3x} - 1 = 9 - 9e^{-3x}$	M1
	$(e^{3x})^2 - e^{3x} = 9e^{3x} - 9$	M1
	$\left(e^{3x}\right)^2 - 10e^{3x} + 9 = 0*$	A1cso*
(ii)	$(e^{3x} - 1)(e^{3x} - 9) = 0$ leading to $e^{3x} =$	M1
	$e^{3x} = 9 \rightarrow x = \frac{1}{3} \ln 9 *$	A1cso* [5]
Note: subs	scripts on marks in (b) indicate which mark is being awarded on epen $(1=1)^{st}$	t etc)
(b)	$\left(\int_{0}^{\frac{1}{3}\ln 9} (9 - 9e^{-3x}) dx = \right) \qquad \left(\int_{0}^{\frac{1}{3}\ln 9} (e^{3x} - 1) dx = \right)$	M11
	$9x + 3e^{-3x} \qquad \qquad \frac{e^{-3x}}{3} - x$	A1 ₂ A1 ₃
	"9x + 3e ^{-3x} " - " $\frac{e^{3x}}{3}$ - x" M14 $\begin{pmatrix} 9 \times \frac{1}{3} \ln 9 + 3e^{-3 \times \frac{1}{3} \ln 9} \\ -(9 \times 0 + 3e^{0}) \end{pmatrix}$ dM15	
	$\left(\frac{e^{3\times\frac{1}{3}\ln 9}}{3} - \frac{1}{3}\ln 9\right) - \left(\frac{e^{0}}{3} - 0\right)$	
	$\left(10 \times \frac{1}{3} ln 9 - \frac{9}{-3} e^{-3 \times \frac{1}{3} ln 9}\right)$	
	$-\frac{e^{3\times\frac{1}{3}\ln 9}}{3} dM1_5 "3\ln 9 - \frac{8}{3}" - \left("\frac{8}{3} - \frac{1}{3}\ln 9"\right) M1_4$	
	$-\left(10 \times 0 - \frac{9}{-3}e^{-3 \times 0} - \frac{e^{3 \times 0}}{3}\right)'$	
	$\frac{10}{3}\ln 9 - \frac{16}{3}$	A16
	ALT $\int (9 - 9e^{-3x}) - (e^{3x} - 1)dx$	M14
	$\left(\int (10 - 9e^{-3x} - e^{3x}) dx = \right) 10x - \frac{9}{-3}e^{-3x} - \frac{e^{3x}}{3}$	M1 ₁ A1 ₂ A1 ₃
	$\left(10 \times \frac{1}{3} \ln 9 - \frac{9}{-3} e^{-3 \times \frac{1}{3} \ln 9} - \frac{e^{3 \times \frac{1}{3} \ln 9}}{3}\right) - \left(10 \times 0 - \frac{9}{-3} e^{-3 \times 0} - \frac{e^{3 \times 0}}{3}\right)$	dM15
	$\frac{10}{2}\ln 9 - \frac{16}{2}$ oe	
	3 3	A1 ₆
		[6]
	Total	11 marks

Part	Mark	Additional Guidance	
Mark	Mark parts (i) and (ii) together.		
(a)(i)	M1	For equating the two equations.	
	M1	For multiplying through by e^{3x} , minimum of 2 out of 4 correct terms.	
		(presence of $\pm 10e^{3x}$ indicates 2 correct terms).	
	A1*cso	Correct solution only, no errors or omissions.	
	M1	Minimally acceptable attempt at solving the equation leading to $e^{3x} =$	
(ii)		See general guidance, if the formula is quoted allow up to two slips in	
		substitution, otherwise the substitution must be correct.	
	A1*cso	Correct solution only, no errors or omissions.	
		If 0 also included then this should be rejected.	
(b)	$M1_1$	For attempt to integrate one of:	
		$9 - 9e^{-3x}$ or $e^{3x} - 1$ or $\pm [(9 - 9e^{-3x}) - (e^{3x} - 1)]$	
		Limits may not be present.	
		At least one term correct. Ignore +c if included.	
	A1 ₂	For correct integration of one of the exponential terms	
		$\pm 9e^{-3x} \rightarrow \pm \frac{9}{2}e^{-3x}$ or $\pm e^{3x} \rightarrow \pm \frac{1}{2}e^{3x}$	
		Limits need not be present. Ignore $+c$ if included.	
	A13	For correct integration of both curves	
	5	$2 \qquad \rho^{3x}$	
		$9x + 3e^{-3x}$ and $\frac{c}{3} - x$	
		or for a fully correct integration where the difference between two	
		expressions is found	
		$\left(10x - 9x - 3x - e^{3x}\right)$ or $\left(0x - 9x - 3x - e^{3x}\right)$	
		$\pm \left(10x - \frac{1}{-3}e^{-3} - \frac{1}{3}\right)$ or $\pm \left(9x - \frac{1}{-3}e^{-3} - \frac{1}{3} + x\right)$	
	2.64	Note: this is an M mark in epen	
	$M1_4$	For the difference between the two expressions either before or after	
		integration.	
		Allow subtraction either way around.	
	JM1	Note: this is an A mark in epen Substitution of correct limits into their integrated supressions (limits	
	u IVI15	subtracted the correct mans around)	
		Dependent on first M scored	
		If substituting before difference found then must substitute into both	
		integrated expressions	
		May be implied by awrt 1.99	
		If integration is not correct then substitution must be shown.	
	A1 ₆	For the correct answer oe.	
	Ű	Must be exact value.	

Question number	Scheme	Marks
9(a)	$(3(3-x)^{-3} = \frac{1}{9}\left(1-\frac{x}{3}\right)^{-3}) \qquad a = \frac{1}{9} \qquad b = \frac{1}{3}$	B1 B1 [2]
(b)	$\left[\left(1-\frac{x}{3}\right)^{-3}\right] = \left[1+(-3)\left(-\frac{x}{3}\right)+\frac{(-3)(-4)\left(-\frac{x}{3}\right)^{2}}{2!}+\frac{(-3)(-4)(-5)\left(-\frac{x}{3}\right)^{3}}{3!}\right]\right]$	M1 A1ft
	$\frac{1}{9} + \frac{1}{9}x + \frac{2}{27}x^2 + \frac{10}{243}x^3$	A1 [3]
(c) (i)	$\frac{\frac{24}{125} = \frac{3}{(3-x)^3}}{\text{or } \frac{125}{8} = (3-x)^3 \implies \frac{5}{2} = 3-x$ $x = 0.5 \text{ oe}$ $\frac{1}{9} + \frac{1}{9} ("0.5") + \frac{2}{27} ("0.5")^2 + \frac{10}{243} ("0.5")^3 (=0.19033)$	B1 B1ft
(ii)	$\pm \left(\frac{\frac{24}{125} - "0.19033"}{\frac{24}{125}} [\times 100] \right) \text{oe}$	M1
	0.87% or -0.87%	A1 [4]
	10	tai 9 marks

Part	Mark	Additional Guidance	
(a)	B1	Correct <i>a</i> , can be left embedded	
	B1	Correct <i>b</i> , can be left embedded	
(b)	M1	An attempt to use the binomial expansion for their $(1-bx)^{-3}$	
		The minimally acceptable attempt is as follows:	
		• The power of <i>x</i> must be correct in each term.	
		• The first term is 1 (or " $\frac{1}{9}$ " × 1)	
		• The 2!, 3! are correct (may be unevaluated)	
		• Their " $-\frac{x}{3}$ " must appear in at least one term of the expansion.	
		a does not need to be present to attain this mark.	
	A1ft	Any two (unsimplified) algebraic terms fully correct in their expansion.	
		Follow through their value for b. a does not need to be present to attain	
		this mark.	
	A1	Fully simplified correct expression.	
Mark pa	Mark parts (i) and (ii) together.		
If you se	$ee \frac{24}{125} = 8$	$3 \times \frac{3}{125}$ leading to $x = -2$ for part (c) then send to review.	
(c) (i)	B1	Correct identification of $x = 0.5$.	
	B1ft	Correct use of their value of x in their expansion.	
		If their <i>x</i> and / or their expansion is incorrect then must show the substitution.	
(ii)	M1	Uses the correct formula, with their value from part (i) to calculate a	
		percentage error.	
	A1	0.87% or -0.87%	
		Awrt 0.87% or awrt -0.87%	

Question number	Scheme	Marks
10 (a)	3	
(i)	$x = \frac{1}{2}$	B1
(ii)	$v = \frac{7}{2}$	B1
	<u>y - 2</u>	[2]
(b)	$\left(\frac{2}{7},0\right)$ $\left(0,\frac{2}{3}\right)$	B1 B1 [2]
(c)	7(2x-3)-2(7x-2)	M1 A1
	$(2x-3)^2$	
	$\frac{-17}{(2x-3)^2}$ or $\frac{-17}{4x^2-12x+9}$	A1
	Correct conclusion	B1
	AIT – product rule	[4]
		M1 A1
	$7(2x-3)^{-1} + (7x-2)(-1)(2)(2x-3)^{-2}$	
	$\frac{-17}{100}$ or $\frac{-17}{100}$	A1
	$(2x-3)^2$ $4x^2-12x+9$ Correct conclusion	54
		BI
(d)		
(4)	y I	
	$y = \frac{7}{2}$ as an equation, clearly labelled	BI (curve)
		D1ft
		(asymptotes)
	0	
	$\left(0, \frac{2}{2}\right)$ written as coordinates or	B1ft
	$\begin{pmatrix} (3,3) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(intersection
	$\left(\begin{bmatrix} \frac{2}{7}\\ \frac{2}{7$	s with x- and v -axes)
		[3]
(e)		
	$-\frac{1}{17} = "\frac{1}{(2x-3)^2}"$	M1
	" $(2x-3)^2 = 17^2$ " or " $4x^2 - 12x - 280 = 0$ " oe	dM1
	x = 10 $y = 4$ or $(10, 4)$	A1
	$y - "4" = 17(x - "10")$ or $"4" = -17 \times "10" + c$	M1
	leading to $c =$	
	v = 17r = 166 or	
		A1

Part	Mark	Additional Guidance
	If a cano	didate gives no response to (a) and/or (b) but shows the correct answers on
	the grap	h we will award the marks. Where answers are given in (a) and/or (b) these
	should b	be marked as they stand with no reference to the graph.
	Ignore l	abelling of (i) and (ii) and mark (a) together.
(a)(i)	B1	For $x = \frac{3}{2}$ oe
(a)(ii)	B1	For $y = \frac{7}{2}$ oe
(b)	B1 B1	First B1 for either correct, second B1 for both correct
		Condone if not given as coordinates e.g. $x = \frac{2}{7}$ and/or $y = \frac{2}{3}$ given
(c)	M1	Attempt the quotient rule. Numerator must be the difference of two terms (either way round) of the form $A.(2x-3) - B.(7x-2)$, A and $B > 1$.
		Denominator must be of the form $(2x-3)^2$
	A1	Either term on the numerator correct (either way round), dependent on previous method mark.
	A1	Obtains $\frac{-17}{(2r-3)^2}$ or $\frac{-17}{4r^2-12r+9}$
	B1	Correct conclusion based on correct working only, for example, (the
		numerator is a negative number and) the denominator is always positive and
		therefore the fraction/gradient is always negative.
	ALT – p	product rule
	M1	For an attempt at Product Rule.
		Must be a sum of two products.
		Must have the form
		$c(2x-3)^{-1} + d(7x-2)(2x-3)^{-2}$ for constants c, d.
	A1	Either term correct, dependent on previous method mark.
	A1	Obtains $\frac{-17}{(2x-3)^2}$ or $\frac{-17}{4x^2-12x+9}$
	B1	Correct conclusion based on correct working only, for example, (the
		numerator is a negative number and) the denominator is always positive and
		therefore the fraction/gradient is always negative.
(d)	B1	Two branches drawn in the correct two "quadrants" created by the two
		aymptotes. Mark intention, allow poor curves, but do not allow the curve to
		bend back on itself or touch any asymptotes.
		Allow BOD if intention is for curve to run alongside asymptote but there is
	D16	a slight deviation back on itself.
	ыш	Two clearly marked asymptotes, it their (a), labelled as described, there must be one section of the curve present, tending towards these asymptotes
	B1ft	Two clearly labelled intersections with the axes of their (b) at least one
	DIII	section of their curve must pass through one of these intersections
		Intersections must be labelled correct way around.
		If additional intersections seen then B0
(e)	M1	Sets their differentiated function from part (c) = $-\frac{1}{17}$
	dM1	Rearranges to get to an equation of the form shown with no denominators
		or a 3TQ and solves using an acceptable method to obtain $x = \dots$
		Dependent on previous method mark
	A1	Correct values for point A (10, 4)
	M1	Uses their values for x and y (from an attempt at working with gradient of
		the curve) with gradient 17 to find an equation for l (if using $y = mx + c$,
		must be a complete method arriving at $c =$)
		If correct $c = -166$.
	A1	Correct equation, any form

M1	Sets their equation for the normal equal to the curve, makes a correct rearrangement to remove any denominator and forms a 3TO
	Note this method mark is not dependant.
A1	Correct exact values for x and y

Question number	Scheme	Marks
11 (a)	$(600 =)2\pi r^2 + 2\pi rh$ oe eg $(300 =)\pi r^2 + \pi rh$	M1
	$h = \frac{300 - \pi r^2}{100 - \pi r^2}$ oe $\pi rh = 300 - \pi r^2$ oe	A1 cao
	πr	
	$(V =) \pi r^2 "\left(\frac{300 - \pi r^2}{\pi r}\right) "$ oe $V = "(300 - \pi r^2)"r$ oe	M1
	$V = 300r - \pi r^3 *$	A1* cso
		[4]
(b) (i)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 300 - 3\pi r^2$	M1
	$0 = 300 - 3\pi r^2 \rightarrow r =$	M1
	$r = \sqrt{\frac{100}{\pi}} * \cos \theta$	A1* cso
(ii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -6\pi r$	M1
	$\rightarrow \frac{d^2 V}{dr^2} = -6\pi \sqrt{\frac{100}{\pi}}$ or $\frac{d^2 V}{dr^2} = -6\pi \times 5.6418958$	
	When <i>r</i> is positive, $-6\pi r$ is negative (-106.347231) and	
	therefore this value of <i>r</i> gives a maximum	A1
		[5]
(c)	$(V =)300"\sqrt{\frac{100}{\pi}}" - \pi \left("\sqrt{\frac{100}{\pi}}"\right)^3 (= 1128.(379167))$	M1
	$p^{3} = \frac{300^{"}\sqrt{\frac{100}{\pi}} - \pi \left(\sqrt["]{\frac{100}{\pi}}\right)^{3}}{\frac{4}{3}\pi} (=269(.3806))$	dM1
	$p = 65 \mathrm{cm}$	
		A1
		[3] al 12 martes
	lot	ai 12 marks

Part	Mark	Additional Guidance
(a)	M1	Correct expression for the surface area of the cylinder and an attempt to
		rearrange to $h = \text{or } \pi r h =$
		Allow errors in arithmetic but not mathematically incorrect process.
		πrh may be embedded, e.g. $300 = \pi r^2 + \pi rh$ becoming $300 = \pi r^2 + V$
		would score M1A1M1 and may score full marks if correct final result
		obtained.
	A1	сао
	M1	Substitutes their expression for height or their expression for πrh into a
		correct expression for the volume.
	A1	cso no errors or omissions, must state $V =$
	Mark pa	rts (i) and (ii) together.
(b)	M1	Minimally acceptable attempt at differentiation, see general guidance, no
(i)		power to increase.
	M1	Places their derivative = 0 and attempts to rearrange to find <i>r</i> .
		Minimally acceptable derivative is of the form $a \pm b\pi r^2$
	A1	Correct value for <i>r</i> , exact value only.
(11)		Must reject negative value if found, award A0 if not rejected.
	M1	Minimally acceptable attempt to differentiate their first derivative, see
		general guidance, no power to increase.
		Or testing gradients or a sketch.
	A1	Correct evaluation of second derivative or explanation of why second
		derivative is negative. Conclusion this value of <i>r</i> gives a maximum. No
		incorrect work.
(c)	Ml	Correct substitution of their <i>r</i> into the expression for <i>V</i> .
	dM1	Attempts rearrangement using the formula for volume of a sphere to make
		p ^o the subject
		Correct order of operations applied to right hand side. Accept arithmetic
	A 1	slips.
	AI	p = 0.5
		Accept awrt 6.5

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom